loading...

سایت اطلاع رسانی صنعت برق ایران

Wavelet based ANN Approach for Transformer Protection Abstract  This paper presents the development of a wavelet based algorithm, for distinguishing between magnetizing inrush currents and pow

Wavelet based ANN Approach for Transformer Protection

admin بازدید : 545 یکشنبه 27 دي 1394 نظرات (0)

Wavelet based ANN Approach for Transformer Protection

Abstract

 This paper presents the development of a wavelet based algorithm, for distinguishing between magnetizing inrush currents and power system fault currents, which is quite adequate, reliable, fast and computationally efficient tool. The proposed technique consists of a preprocessing unit based on discrete wavelet transform (DWT) in combination with an artificial neural network (ANN) for detecting and classifying fault currents. The DWT acts as an extractor of distinctive features in the input signals at the relay location. This information is then fed into an ANN for classifying fault and magnetizing inrush conditions. A 220/55/55 V, 50Hz laboratory transformer connected to a 380 V power system were simulated using ATP-EMTP. The DWT was implemented by using Matlab and Coiflet mother wavelet was used to analyze primary currents and generate training data. The simulated results presented clearly show that the proposed technique can accurately discriminate between magnetizing inrush and fault currents in transformer protection.

دانلود - Download Link
حجم:  490 KB
رمز: www.power2.ir
تعداد صفحات: 8
نوع فایل: pdf

 

ارسال نظر برای این مطلب

نام
ایمیل (منتشر نمی‌شود)
وبسایت
:) :( ;) :D ;)) :X :? :P :* =(( :O @};- :B :S
کد امنیتی
رفرش
کد امنیتی
نظر خصوصی
مشخصات شما ذخیره شود ؟ [حذف مشخصات] [شکلک ها]
اطلاعات کاربری
  • فراموشی رمز عبور؟
  • نویسندگان
    آمار سایت
  • کل مطالب : 356
  • کل نظرات : 0
  • افراد آنلاین : 2
  • تعداد اعضا : 0
  • آی پی امروز : 16
  • آی پی دیروز : 37
  • بازدید امروز : 170
  • باردید دیروز : 170
  • گوگل امروز : 0
  • گوگل دیروز : 2
  • بازدید هفته : 340
  • بازدید ماه : 6,405
  • بازدید سال : 37,683
  • بازدید کلی : 657,837